TDengine 助力西门子轻量级数字化解决方案 SIMICAS 简化数据处理流程
SIMICAS® OEM 设备远程运维套件是由 SIEMENS DE&DS DSM 团队开发的一套面向设备制造商的数字化解决方案。在确定选择 TDengine 作为系统的时序数据库后,他们在 SIMICAS® OEM 2.0 版本中移除了 Flink、Kafka 以及 Redis,大大简化了系统架构。
时序数据库 TDengine 用户主要来自物联网、工业互联网、车联网、物流、IT运维监测、电力、智慧城市、智慧矿山等领域。
SIMICAS® OEM 设备远程运维套件是由 SIEMENS DE&DS DSM 团队开发的一套面向设备制造商的数字化解决方案。在确定选择 TDengine 作为系统的时序数据库后,他们在 SIMICAS® OEM 2.0 版本中移除了 Flink、Kafka 以及 Redis,大大简化了系统架构。
在 TDengine 平稳运行的数周时间里,中天钢铁的新系统平均每周收录 3000 多辆车辆表与 100 多条船只表,每张表中数据或多或少,累计数量已达百万,业务的实际效果也达到了预期。本文分享了他们对于新项目的数据库选型、应用的思考,同时也进行了业务效果分析。
为了解决广大新能源汽车车主面临的充电效率问题,协鑫能科打造了以换电为核心业务的移动能源品牌「协鑫电港」,需要对各种数据流进行科学管理、合理运用与智能调度,在数据库的选择上尤为重要。本文分享了他们对于能源数据库架构的搭建思考以及 TDengine 的应用心得。
为了满足智能驾驶业务的数据处理需求,大疆车载试图从多家数据库中进行选型调研,帮助智能驾驶业务提升写入查询性能、降低运维成本。本文将分享大疆车载在数据库选型、系统搭建和业务迁移等方面的经验。
写入速度提升数十倍,TDengine 在拓斯达智能制造工厂解决方案上的应用。在拓斯达的智能工厂整体解决方案项目中,传统的关系型数据库已经无法高效处理时序数据,在加载、存储和查询等多个方面都遇到了挑战,最终他们选择了 TDengine 来匹配工业传感器数据的应用分析场景。
在 OPPO 的穿戴产品的手环/手表类业务中,产生的数据类型为时序数据,具有写入量巨大且存在离线/历史数据补录(更新)的处理需求。此前使用的 MongoDB/MySQL 集群方案,后端存储压力较大,需要经常扩盘,针对此痛点,OPPO 云计算中心智慧物联云团队尝试调研对比了几款时序数据库(Time-Series Database)产品,试图寻找一个降本增效的解决方案。
在 58 同城的驾考业务上,需要存储分析驾校教练车传感器产生的数据,这是典型的时序数据场景,开发人员对原有的 TiDB 性能并不是很满意,因此 DBA 团队开始调研更具针对性的时序数据库。基于自身的业务需求,他们在 6 款时序数据库中选择了 TDengine Database,在经过深入的调研测试之后,开始部署实践,最终业务痛点问题得到了解决。
在柳工的工业车联网应用 LiuGong iLink 中,由于应用层不合理的复杂查询和历史数据的高频写入,导致 MySQL 处理速度缓慢,甚至容易宕机,严重影响了用户体验。在此背景下,柳工决定改用 TDengine Database 来处理时序数据,本文分享了他们的改进效果与实践经验。
从试用到正式上线的一年多里,释普科技从 TDengine 2.0 版本一直关注到 2.4。目前,释普的三款产品“监控保”、“数据宝”、“仪器保”均与 TDengine 达成了合作,不仅机器投入成本实现了显著降低,查询、存储等性能也能满足业务发展需求。本文将分享释普科技应用 TDengine 升级实验室仪器、监控智能制造方案。
酷哞哞与 TDengine Database 结缘于 2019 年,在其工业互联网设备上云解决方案中,选择了 TDengine 作为数据平台,以满足海量工业数据存储和分析的需求。本篇文章解读了 TDengine 在此方案中的具体应用。