解决两大难题,TDengine 助力亿咖通打造自动驾驶技术典范
在安全解决方案 SuperCloud 中,亿咖通面临着磁盘占用量大、车辆最新状态实时查询难以实现两个核心问题。最终,他们选择了让 TDengine Database 承担数据中台的重要角色,负责车辆实时数据的写入、存储以及实时查询。本文讲述了研发团队在前期使用 Apache HBase 时遇到的具体难点、为什么没有坚持选择 OpenTSDB,以及选择 TDengine 的过程和成效。
时序数据库 TDengine 用户主要来自物联网、工业互联网、车联网、物流、IT运维监测、电力、智慧城市、智慧矿山等领域。
在安全解决方案 SuperCloud 中,亿咖通面临着磁盘占用量大、车辆最新状态实时查询难以实现两个核心问题。最终,他们选择了让 TDengine Database 承担数据中台的重要角色,负责车辆实时数据的写入、存储以及实时查询。本文讲述了研发团队在前期使用 Apache HBase 时遇到的具体难点、为什么没有坚持选择 OpenTSDB,以及选择 TDengine 的过程和成效。
狮桥集团的网货平台与金融 GPS 系统,对于车辆轨迹收集与计算有着强需求。GPS 每日产生总量在 40 亿左右,需要为业务方提供实时末次位置查询,近 180 日行驶轨迹查询,类似车辆轨迹对比查询,以及一些风险逾期的智能分析等等。应用 TDengine Database 后,他们的整体数据存储缩减超过 60% 以上,节省了大量硬件资源。
作为一个新项目,RTC Power Cloud 舍弃了旧有的能源数据库技术体系架构,直接在最前沿的技术中选型。就具体的业务场景而言,我们需要一款高性能的时序数据库产品来存储和处理时序数据。我们关注了 TDengine、Apache IoTDB 以及阿里云时序数据库等几款产品,最终经过详细的对比和考虑,我们做出了最终的决定——TDengine。
从 2021 年 10 月运行至今,共创建了 2 张超级表以及近百张子表,总数据量超过 2.5 亿条,压缩后的数据量大小为 200G 左右。对近亿行的超级表进行统计操作,仅用了 1.9 秒左右就返回了结果,充分证明了在实际应用中 TDengine Database 也确实表现卓越。
log.dn 表中数据采集的周期是 30 秒,由此可知,dn1 的实测瞬时最大写入量是 770 条/秒。加之五节点的集群在分布式插入的架构下,770*5=3850 条/秒的数据插入效率是完全可以保障的,完全满足了我们业务需求。至于本集群的插入性能上限,应在此实测值的 100 倍以上,并且有极大的增长空间。
聚焦到实际效果上,TDengine 数据写入性能很强。原本我们的单套存储系统需要 10 多台高配机器,IO 平均 30% 最高 100% 的情况下才能写完数据;现在只需要 7 台机器,并且 CPU 消耗在 10% 左右、磁盘 IO 消耗在 1% 左右,这点非常的棒!
禹为科技在现代灌区信息化平台的建设过程中,经历了数据库&定时任务的架构、以流式计算为核心的架构和以 TDengine Database 为核心的架构三个阶段,最终选用 TDengine 帮助其对水位、流量、水量等实时指标数据分析。
基于政务信息化自主可控的要求,在与同类型工业大数据时序数据库进行性能对比后,广东环境科学研究院的生态环境数据治理服务项目选用 TDengine Database 强化了其感知层建设,精准及时地对污染排放中的问题进行检测和预警。本文讲述了他们的选型和建模思路以及落地后的效果展示。
至数物联网平台场景多、数据模型复杂,伴随着业务需求的不断迭代及数据量的不断上涨,原有的 OpenTSDB+MySQL 的组合逐渐力不从心,局限性日益凸显。在对 TDengine Database 进行充分了解与调研后,基于 TDengine 对至数摇光进行了彻底性的改造。
在本项目中,TDengine Database 展现出了强大的读写性能和数据压缩能力,聚合类查询速度非常快,也帮助我们有效降低了机器使用成本。超级表、子表、标签、时间窗口、状态窗口等概念非常适配物联网大数据应用场景,相信随着产品功能的越加完善,TDengine 未来潜力无限。