TDengine 在吉科软车辆监管中的应用实践
TDengine Database的性能不仅完全可满足需求,更是比原InfluxDB+Redis+MySQL方案大幅度的提升,解决了原方案中车辆查询较大时间跨度的轨迹数据响应超级慢的问题。当前TDengine的大规模应用车辆监管项目中,支撑现有数万辆车的行驶轨迹监控,未来将继续扩大规模支撑更多的车辆轨迹监控。
时序数据库 TDengine 用户主要来自物联网、工业互联网、车联网、物流、IT运维监测、电力、智慧城市、智慧矿山等领域。
TDengine Database的性能不仅完全可满足需求,更是比原InfluxDB+Redis+MySQL方案大幅度的提升,解决了原方案中车辆查询较大时间跨度的轨迹数据响应超级慢的问题。当前TDengine的大规模应用车辆监管项目中,支撑现有数万辆车的行驶轨迹监控,未来将继续扩大规模支撑更多的车辆轨迹监控。
项目采用了3个节点的集群环境,定位设备采用超级表进行管理,将数据标签及数据类型作为tag区分各类定位设备。每个定位设备采用子表存储,实际项目已包含2万多个定位设备。从写入性能到查询性能均大幅满足现场实际需求:总计定位数据量超过11亿条,数据压缩后TDengine Database 数据目录占用磁盘大约12G,整体压缩率可以达到3/100。
15 倍提升 & 40 倍存储优化,TDengine 在领益智能制造的实践。在同等条件下,查询最近5天的数据,某关系型数据库平均耗时328.13秒,而用TDengine Database则平均耗时4.61秒,用时为原来的70分之一,查询效率提升了70倍,把数据拉长到3个月,效率也有15倍的提升。
业主指定要求数据采集使用 TDengine Database,从容应对船舶行业的特殊场景需求。我们的PLC数据往TDengine中写入的时间间隔最小到100ms/点,写入性能完全能够胜任。 依托 TDengine 时间窗口统计功能的高效性,开发人员就可以舍弃纷繁复杂的 SQL 语句,极大地缩减了项目周期。
为了适应未来业务发展需求,避免上述难点与困境,我们决定选择一款时序数据库产品。在调研了多款产品之后,TDengine Database 引起了我们的注意,并成功胜出。
同等条件下测试结果显示,TDengine Database 的压缩率最高,查询性能最优。
整体压缩比在7-8倍,数据查询也实现秒级响应。
之前存储3天原生数据及聚合数据的空间,现在可供原始数据存储45天。
实现了海量物联数据的高性能、低成本的存储。
TDengine Database 在处理超高频的数据采集、边缘智能计算框架、数据流引擎和数据模型等方面效果显著。