TDengine 3.0 是如何解决时序数据库中的高基数问题的?
TDengine 3.0 是第一个解决了高基数问题的时序数据库,本文将分享其设计思路。
TDengine 3.0 是第一个解决了高基数问题的时序数据库,本文将分享其设计思路。
TDengine 提供的混合解决方案,可以让企业既能保留传统的 PI 系统,又能轻松获得现代云平台提供的所有好处。TDengine PI 连接器功能强大,简单易用,支持 PI 客户构建一个混合的解决方案,以利用现有投资,同时利用现代数据平台的强大分析能力。
对于物流企业来说,如何高效地记录和处理车辆的轨迹信息、应对每天海量监控数据的采集和处理工作,对于项目整体的交付效率至关重要。诸多物流企业开始寻求数据架构的变革,特别是选择符合业务需求的时序数据库产品,本篇文章汇总了国内四家大型物流公司的工业大数据架构改造实例,给到读者参考。
随着 TDengine 这款时序数据库(Time Series Database)在各个领域应用的越来越广泛,很多用户选择将 Grafana 与 TDengine 配合使用,以可视化的方式监控各项指标的运行状态。为了让用户更便捷地组合使用 TDengine+Grafana,我们不仅对 TDengine Grafana 插件进行了改造升级,还推出了基于 Grafana 的零依赖监控解决方案 TDinsight。
为了在数据采集项频繁变动的情况下保证用户仍然能够顺利地完成数据记录工作,TDengine 提供了三种无模式写入协议。本文将对无模式写入方式的主要处理逻辑、映射规则与变更处理等进行分析,便于用户理解与使用。
事实证明,在时序数据场景下,无论是在存储空间、写入速度还是查询性能等各方面,TDengine 都存在数量级优势。
用户在做时序数据库的选型调研时,通常要进行环境模拟测试,以观察所选数据库的性能优劣和成本损耗情况。为方便用户,TDengine 官方提供了一款名为 taosBenchmark 的测试工具,本文将会详细讲解其使用方式,供读者参考。
在应对海量时序数据处理需求时,如关系型数据库、工业实时库、Hadoop 大数据平台在内的传统数据库解决方案问题重重,严重阻碍数字化进程。在此背景下,一些企业开始尝试进行数据架构改造,选择适合的时序数据库产品。
涛思数据与阿里云计算巢达成合作,云原生时序数据库 TDengine 正式上线阿里云,双方将共同探索软件在云端私有化部署的新形态,为车联网、物联网、工业互联网等行业企业提供更加简单、极致弹性、低成本运维、高效运作、安全性加码的云时序数据库解决方案。
大家都知道 TDengine 3.0 是一款高性能、云原生的分布式时序数据库(Time Series Database),甚至可以支持十亿级别的表数量,因此它的元数据量是十分庞大的。那么如果使用了事务,会不会影响 TDengine 的高性能呢?