时序数据库(Time Series Database)的存储引擎要想做到极致,还得自研
LSM Tree 上怎么就不可以建 B-Tree Index 了?(HBase 在 region 上也有 B-Tree Index)B-Tree 怎么就一定要直写硬盘,不能先写 WAL 和走内存 Cache 呢?
时序数据库 (TSDB) 是一种数据库管理系统,用于存储、处理和分析时间序列数据。
时序数据(TSDB) 是按时间维度顺序记录且索引的数据。像智慧城市、物联网、车联网、工业互联网等领域各种类型的设备和传感器都会产生海量的时序数据,证券市场的行情数据也是时序数据,这些数据将占世界数据总量的 90% 以上。
时序数据库(Time Series Database)并不是一个新兴的概念。追溯其历史,1999 年问世的 RRDtool 应该是最早的专用时序数据库了。在著名的数据库排行网站 DB-engines 上面,时序数据库的逐步流行起始于 2015 年,而在过去的两年,随着物联网的快速增长,时序数据库成为流行度最高的实时数据库。
LSM Tree 上怎么就不可以建 B-Tree Index 了?(HBase 在 region 上也有 B-Tree Index)B-Tree 怎么就一定要直写硬盘,不能先写 WAL 和走内存 Cache 呢?
与现在大家所熟悉的数据相比,时间序列数据有其显著不同特点,本文对其特点做一分析。
为满足高速增长的物联网大数据市场和技术需求,在吸取众多传统关系型数据库、NoSQL 数据库、流计算引擎、消息队列等软件的优点之后,涛思数据自主开发出创新型时序数据库 TDengine。在时间序列数据的处理上,TDengine 有着自己独特的优势。就 OpenTSDB 当前遇到的问题来说,TDengine 能够有效解决。
本文将详细介绍 OpenTSDB 与 TDengine 这两款时序数据库(Time Series Database)在系统功能层面上存在的差异。阅读完本文的内容,你可以全面地评估是否能够将某些基于 OpenTSDB 的复杂应用迁移到 TDengine 上,以及迁移之后应该注意的问题。
此次测试,从数据库(Database)的读、写、查询、压缩比等方面对TDengine和InfluxDB进行了对比测试。从测试结果上看,TDengine的性能远超InfluxDB,写入性能约为5倍,读取性能约为35倍,聚合函数性能约为140倍,按标签分组查询性能约为250倍,按时间分组查询性能约为12倍。