工业生产环境下,如何打造全面有效的数字化监控?
一些煤矿企业已经开始进行数据架构转型实践,也取得了一些进展,值得一提的是,时序数据库(Time Series Database)在其中发挥了重要作用。本文将这些案例进行了相关汇总,供读者参考。
时序数据库 TDengine 用户主要来自物联网、工业互联网、车联网、物流、IT运维监测、电力、智慧城市、智慧矿山等领域。
一些煤矿企业已经开始进行数据架构转型实践,也取得了一些进展,值得一提的是,时序数据库(Time Series Database)在其中发挥了重要作用。本文将这些案例进行了相关汇总,供读者参考。
对于物流企业来说,如何高效地记录和处理车辆的轨迹信息、应对每天海量监控数据的采集和处理工作,对于项目整体的交付效率至关重要。诸多物流企业开始寻求数据架构的变革,特别是选择符合业务需求的时序数据库产品,本篇文章汇总了国内四家大型物流公司的工业大数据架构改造实例,给到读者参考。
在应对海量时序数据处理需求时,如关系型数据库、工业实时库、Hadoop 大数据平台在内的传统数据库解决方案问题重重,严重阻碍数字化进程。在此背景下,一些企业开始尝试进行数据架构改造,选择适合的时序数据库产品。
为了帮助一众金融企业寻找到合适的数据库解决方案,我们汇总了几个比较有代表性的企业客户案例,希望他们的相关实践经验应该能够给到行业从业者一些解决思路。
在应对车联网场景下时序数据的存储时,企业大多选择的都是 MongoDB 或 Apache HBase,随着业务的加速扩张,写入速度太慢、支撑成本过高等问题逐渐显现。本文将会从四个典型的车联网案例出发,给到你数据架构升级思路。
车联网业务是中通科技配送全链路业务中非常重要的一环,在实际的项目需求中,需要实时查询车辆最新位置状态,达到车辆运营可视化管理。中智车联服务平台选择了用 TDengine 来高效处理从车辆上实时采集的时序数据。
为了更好地支持阳光氢能 PEM 绿电制氢系统,本文作者所在的部门需要寻找一套满足业务和性能需求、而且具有国产知识产权的时序数据库,来替代原本使用的 InfluxDB。本文分享了他们将 InfluxDB 替换为 TDengine 的具体原因,以及相关的实践思路。
兴盛优选需要通过实时产生的数据来判断设备是否工作、检测通讯是否延时、观测 SNMP OID 流量是否正常等,从而保障运维与网络人员及时发现问题并修复。为高效处理各类时序数据,保障服务的稳定运行,在对比了 Elasticsearch、InfluxDB 和 TDengine 三款产品之后,他们选择并落地了 TDengine。
在 2021 楼宇科技 TRUE 大会上,美的暖通与楼宇事业部首次发布了数字化平台 iBuilding,以“软驱硬核”方式赋能建筑行业。作为一个全新的项目,iBuilding 在数据库选型上比较谨慎,分别对比了多款 Database 产品之后,才做出了自己的选择。本文分享了他们的数据库选型思考和落地经验。
除了要对几千台摄像头进行数据采集加在线检测,苏州大学还有 1500 多台交换机和 4000 多台服务器,在数据库的选择上,它需要在扛住如此大量设备 24 * 7 高频长期写入的同时,还要确保相当出色的查询效率。从 PostgreSQL 到 TDengine,本文分享了江苏纵目在面对业务难点时,在数据库的选择、应用和成效方面的经验。